Support-Set Bottlenecks for Video-Text Representation Learning

Mandela Patrick*, Po-Yao Huang*, Yuki M. Asano*, Florian Metze, Alexander Hauptmann, Joao Henriques, Andrea Vedaldi

ICLR 2021 spotlight

* equal contribution

Noise contrastive learning

Key idea:

features should encode image's core information. learn this by comparing augmentations against other images.

Examples: NPID, MoCo, CMC, SimCLR...

[Wu et al., CVPR 2018; He et al., CVPR 2020; Tian et al., ECCV 2020; Chen et al., ICML 2020]

OXFORD Carnegie Mellon University Facebook Al

Noise contrastive learning for Video-Text Representation Learning

Multi-modal contrastive formulation:

- **Pull** together videos and **their** captions
- Push apart videos and other captions

[Miech et al., ICCV 2019; Miech et al., CVPR 2020]

Curse of Noise contrastive learning: Faulty Negatives

This can incorrectly push apart videos with the same content

[Miech et al., ICCV 2019]

Key Insight: Attention for Shared Semantics

We assume that, for each video, the batch always contain **at least one more congruent video**

We then learn to predict a video's caption based on the other videos that the network thinks are the most related

Throwing the ball

p(caption | e)

Mixed embedding

e via soft-attention (key=query=value)

Net force from NCE loss

Net force from reconstruction loss

5

Our Approach: Support-set Bottlenecks

OXFORD Carnegie Mellon University Facebook AI

Cross Attention for Reconstruction

- Learn to reconstruct caption as weighted combination of videos in the support-set
- Implicitly pulls together videos with similar captions

7

Example Videos and Attentions

- Attention is highly-focused (top-left square)
- Attention acts as bottleneck (tries to relate semantic concepts across videos)

Support-Set

Support Set acts as bottleneck

128 256 512 2048 (memory bank)

Support-set Size

Comparison to State-of-the-Art

Facebook AlOXFORDCarnegie Mellon University

10

SOTA on MSVD Text-Video Retrieval Text-Video

OXFORD Carnegie Mellon University Facebook AI

[Kiros et al., arXiv; Faghri et al., BMVC 2018; Liu et al., BMVC 2019; Mithun et al., ICMR 2018] 11

SOTA on VATEX Text-Video Retrieval

OXFORD Carnegie Mellon University Facebook AI

[Kiros et al., arXiv; Dong et al., CVPR 2019; Faghri et al., BMVC 2018; Chen et al., CVPR 2020] 12

Text-Video

SOTA on ActivityNet Text-Video and Video-Text Retrieval Text-Video Text-Video

Facebook AI

[Kiros et al., arXiv; Faghri et al., BMVC 2018; Dong et al., CVPR 2019; Chen et al., CVPR 2020] 13

SOTA on MSR-VTT Text-Video and Video-Text Retrieval Video-Text **Text-Video**

OXFORD Carnegie Mellon Universit [Bruno et al., arXiv; Miech et al., ICCV 2019; Gauber et al., ECCV 2020; Rouditchenko et al., arXiv] 14

Qualitative Results and Limitations

A Person is swimming in some white water rapids.

A man is showing the interior of a car.

A Jeep or other off-road vehicle is driving slowly through a very narrow valley without any road

Conclusion

Noise contrastive learning uses instance discrimination to learn effective representations.

Instance discrimination naturally produces faulty negatives that hurt representations.

We propose to alleviate this using a generative objective that implicitly pulls together semantically related videos.

We set SOTA on all video-text and text-video retrieval benchmarks.

